STRESS LAYER ATTACHED TO HALF PLANES

N. N. Sergeev-Al'bov UDC 539.373

1. It was shown in [1] that a stress layer subjected to compressive stresses is formed along the weld
line behind the point of contact during the collision of plates in the explosive welding mode. A hypothesis was
advanced that the presence of the stress layer is the reason for wave formation, which occurs in some col-
lision modes, It was established in experiments on explosive welding that the wave formation occurs at some
time afterwards and not at the time of collision; i.e., an initial perturbation is necessary for the beginning of
the wave formation process [2]. Such a perturbation might yield a rarefaction wave arriving from the free
surface of the plate being thrust.

The question of the possibility of a wave-formed break in the stress layer S={x, y|—©<x<+», —h =<
y=<h} under the condition that this layer is compressed by stresses close to the yield point of the material but
not exceeding it, is investigated in this paper. The case when the layer is in the plastic state was studied in
1], Let the stress layer be bent wavily under the effect of a small perturbation. Since a layer compressed
by stresses close to the material yield point is considered, then it is natural to assume that plastic hinges are
formed at the vertices of the bending., Henceforth, the whole stress layer is considered as a "pin—joint system"
connected by hinges, We shall assume that the rods are absolutely elastic and that the whole "pin—joint sys-
tem" can leave the state of rectilinear equilibrium under the effect of a small perturbation. The compressive
stresses [1]
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act in the layer S, where ¢, b, are the longitudinal and transverse speeds of sound in the material, p, is the
density of the material, U is the velocity of the contact point, vy is the collision angle, H is the height of the
plate, Tg is the characteristic relaxation time of the tangential stresses in the plastic deformation zone located
in the neighborhood of the contact point.

A vertically directed force f=2khsinB, where j is the angle being formed between the rods, will act
at the vertices of the break because the pin—joint system leaves the rectilinear equilibrium state. The founda-
tions of the colliding plates will hinder the break of the pin—joint system. The height of the stress layer [1]
is small compared to the height of the plate, and we shall hence consider the pin—joint system to be fastened
to the half planes Py ={ x, y|—© <x<©, —0 <y <—h}, Py={x, y|=© <x<®, h<y<=}, The stress layer
(the "pin—joint system™) leaves the rectilinear equilibrium state under the effect of a small perturbation if
the reactive force 2P, occurring because of bending of the foundation of the two half planes, is less than
the force f which occurs at the vertices of the break in the "pin—joint system" (Fig. 1).

2. Let the stress state in the (x, y) plane be described by a system of equations of nonlinear elasticity
theory (these equations are one of the forms of writing the equations in [3})
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where oy, 09, 04y are stress tensor components; T, ¥, velocity vector components of the displacement of
points of the medium; ky, ky, ks, tension (compression) coefficients of points of the medium; ¢, angle of rotatlon
of the coordinate system relative to the principal axes; and p, density of the medium,

We shall give the equation of state of the medium in the following form:
E (ky, Ky, y) = Ko (8" — 1)2/(2n%) + 2636™D, (2.2)

where ¢, by are the longitudinal and transverse speeds of sound in the medium, X, —co 4/ 3)b0, ard n and m
are constants of the equation of state;

§ = /(kakoky); D = (df + df + d3)/2,
& =n (k;/V Bogly) (=1, 2, 3).

The stress tensor components 044, 0y, 045 are determined in terms of the stresses oy, 0,, andtheangle
¢ by means of the formulas

Oy = 0y €0S 29 + 0, sin %¢, 0y = o, sin %@ + ¢, cos g,
O = {0y — Oy} sin @ cos @.
The principal stresses are related to the equation of state by Murnaghan's formulas [3]
' 0 = pkiE;. E; = 0B/ok; (i = 1, 2,3), (2.3)
which, for the specific equation of state (2.2), take the form
0; = — pgK 8" (87 — 1)/n — 2p 0imE™ D 4 200861, (i=1, 2, 3),
where p, is the density of the material under normal conditions,
At the initial instant the stress state is given in the (%, y) plane in the form
ol1=033=—k olh=0, 2=10=0, oly—0 inlayer S, (2.4)
0f1=033 =09 =09, =0, u®=2"=0 in the half planes P,, P,. (2.5)

The tensmn (compressmn) coefficients of the medium ky, ky, kg can be reproduced by means ofthe stress~
es given. Since oJ;=0, then ¢°=0, It follows from (2.5) that kf=k§=k{=1 in the half planes P, and Py,

Let the initial stress state of the (x, y) plane be subjected to 2 small perturbation, We shall seek the
solution for the perturbed state of system (2.1) in the form

ky =k} + ea (z, y), ky=1k) 1 Bz, y), ky= kg,
P = (po + s(Pl (1'_, y)r E = ]—1'0 + syl (.T, y), I—J = ;0 + ;vl (x, y), (296)

where € «1,

Substituting (2.6) into the last four equations in (2.1), and keeping only first order terms in € in the
relationships obtained, we obtain expressions for the functions «, 3, ¢
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where u, v are components of displacements of points of the medium from the initial to the perturbed state,

Let us use the relationships (2,7), Murnaghan's formulas (2.3), representation (2.6), and let us convert
the first two equations of the system (2.1) to the form
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where Ejj= oE/ Bkiakj (i, j = 1, 2) and the superscript zero indicates that the quantities refer to the initial
state, .
Let us use the equation of state (2.2) and let us evaluate the coefficients of system (2.8):
K{E1y = —{— Kod" (6™ ~ 1)/n — 265m8™ D + 2b36™d,)
+ | Ko (2620 — 87) 4 265m26mD — Ambid™d, + 4b36m/3),

kyk, (Elz _;_’%_ —"'25'2) K, (2820 — 87) + 263m?6mD — 2b3md™ (dy + dy)
2 p —Kd,
G fy] - _r._.__
2b26m /3 - Kobn (67 1)/n 4 2b56™mD - 2b 5"‘ - . (2.9)

BB, —kE, 258" (Ink, —1Ink)
K-k K} — k3 '
J2Egy = — {— K" (8 — 1)/n — 263m&™D + 2b38md,) — {Kq (2627 — 87) 5 2b5m26mD — 4bimdmd, + 4b36m/3).
Taking into account that E}=0 for the layer S, we write (2.8) in the form

g o 0720
02 0 O%u 0 k9E] i) oz KB} gy
Ai Eiia zTA kZ(E12+ 02 Aoz)axay“}"kZ kgz_kgzaT?f=O!
2.10)
1 E \ 2.
02 3% 0 % 02
k1 P koz i ik (Eiz + kuz) dxdy + k2 Ezz—- =0.

The coefficients of system (2.10) are determined from (2.9) by substituting kf, k3, k3, which are defined
by (2.4), Since kf=kg=kg=1 in the half planes Py and P,, system (2.8) consequently has the following form in
this case:

2(1—o0) &u 1 o
T—26 82 T T—736 Gy + ay =0, (2.11)
82 u 2(1 — o) 0%

=0,

822 + 1—20 Bxdy + 1—20 oy
where o is Poisson's ratio of the half plane material:
o = (3K, — 2b3)/(2 (3K, + b})).

In this case the stresses will be determined in the displacements by the equalities
E du o
Su =,(1 Fod—29 [(1 —'0)52 +o @]'
E ou o
O3 = 21+ 0)[a_y + a—z]v
— E du aU,
O =T c)(i—"%)[“b?v +A =95
where E is Young's modulus of the half plane material.
E= QPoKubg/(3Ko -+ b§),
3, We shall seek a solution of the form
w(z, y) = iUQ)eivs, vz, y) = V(yleio= (3.1)
for system (2.10) describing the stress state in the layer S and the system (2.11) describing the perturbed state
in the half planes Py and Pj.
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Substituting (3.1) into (2.11) yields a system of ordinary differential equations

d2U w dv 2(1—0a) .
W tTomay — @ 1= CW=0 (3.2)
2(1—a)d2.v ® U

125 o ~i—zeay — @7 W =0
Let us determine the reaction of the elastic half planes P; and P, to a given bending of their boundaries.
Let the following boundary conditions be satisfied: oys(x, —h)=0, v{x, —h) =Boe“‘7x, o15(%, h) =0, v{x, h) =A0g1“K.
The boundary conditions for system (3.2) have the form
V(—h=By [Lrav| | =0 (3.9)

y=—h

- ay -
V() = A, [r + mVL=h —o0. (3.4)
The solution of system (3.2) in the half plane P;, which decreases at infinity and takes on the given boundary
conditions (3.3) for y=—h, is given by the formulas

Boe®wth)

Fr=a (20— ) — 0@+, V()= 13 (1—0)—a (g +H).

U= s

Correspondingly, the solution of system (3.2) in the half plane P,, which decreases at infinity and takes on the
given boundary conditions (3.4) for y=h, is given by the formulas
At A e®h—
Uy)=— '2—°(‘1‘—){20—-1+(ﬂ (y—hl V(y) = 2';3 5 {2 26 + o (y—h)}
Then 04,, the stress tensor component on the half plane boundaries y=—h, y = b, is reproduced by means of the
displacements obtained:

E
Oua (2, — h) = gy Bot™o™; (3.5)
O (2, h) = — 5B Agelon, (3.6)

Now we seek a solution taking the given values (38.5) and (3.6) on the boundaries y =—h and y=h and
G32(%X, —h) =0, 0y5(%, h) =0 and having the form (3.1) for the system of equations (2,10) in the layer S, Let us
introduce the notation

kﬂEO kOEO

£y == £y == k(;kg (E(;g -;— k(J"r) ]102), Cq = k '—'———,-‘—G-z;

: KBS
— MPE; o= — kPESy; ¢ = kgzﬁi'

1 T2
Substituting (3.1) into system (2.10), we obtain a system of ordinary differential equations

42U 7, -
g o0, et =0, 3.7

42y )

L au
5 dyE T 60 5

Fp + ¢g0?V =0,
We write the solution of system (3.7) in the form
Uly) = myla cos voy — b sin vaylenos + m,{b cos vay -+
— a sin voylesey 4 mgl—a cos voy — b sin voyle=r9y - m [—b cos vey -+ e sin voyle—rey,
Viy) = my cos voyeroy -~ m, sin vayere? - Mg €S voye oy — m, sin voye—hoz,

where

w=V —(cye, - €485 — €16)/(4eges) + Veseal(cses)/2;

v=V {caCq -1 €405 — €1¢4)/(deyes) +- Vcac,;/(cscs)/Z;
@ = —cley — /ey (0 - v3); b = —egvley + cpvl(e(u + vA);

my, my, mg, My are arbifrary constants;

By = V(—h) = m, cos vohe-roh — m, sin vehe—toh - m, cos voheroh + my sin voheroh;

Ay = V(h) = m, cos vohewoh 1 m, sin vaheroh — m; cos vohe—'0h — m, sin vohe—noh,
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Fig. 2

The conditions on the boundary of the layer S yield the following algebraic system of equations in the
constants my, m,, mgy my: '
mAy + medyy + Madyg + Ay =0, md + mpd;, + medy;
+ mydyy =0, mB;, + myB,s + myByg + m,By = 0, mBys + myBy, + mgBy, + mByy = 0,
where
Ay = l(—ay + R) cos vok + ay, sin vahleneh;
Ay = [—ay, cos voh + (—ay, + R) sin vehleser;
Age = lay + R) cos vah + ay, sin vohle-wok;
i Ay = lay cos veoh — (a; + R) sin vohle—uok;
By, = (by; €0s voh — by, sin vah)enoh; B, = (b;; cos voh

<+ by, sin vah)eror; By = (by; cos vk + by, sin voh)e—nok,
B4 = (b3 cos voh — by, sin voh)e—nwh;
@y, = bykia — bakip; a;, = bikih — bykiv;
by = POHYEyq; by = pUK3ES;

; i 12
n = (!‘La - b‘V) 02 0 + 5
D e T
kg E
612 == m(pb + av); R = 2—(—1—_.__&_2.).‘

A linear homogeneous system of algebraic equations has a solution different from zero if the determinant
of this system equals zero; i.e.,
[—2byR cos 2veh — 2(byyay; + a10b10) sin 2veh — by, R(e—Hok
+ ofoh) L (@b — ayiby)(e—Wek — eMoR) {20, R cos 2veh —2
X (buatss + Gubrg) Sin 2v0h + bygR(e—H0k -k ¢HOR) — (g b, — ayby)(e~or — eHok)] = 0. (3.8)

We seek the roots of (3.8) numerically. The roots of (3.8) will be complex, of the form w=0 +iy for
those values of the compressive stresses in the layer S which are given by (1.1). If w=0+iy is a root, then
@=0—1iy is also a root of (3.8), Let us take the root which has the lesser positive imaginary part, This root
will yield the solution which decreases least as x—'(x > 0). For instance, for iron under the compressions
021 =—19 kbar, 0 =2,89, ¥ =0,826, The length A decreasingleast for x —« of the wave by which the layer is
bent is hence determined by the formula A= 21/6. Let us consider plastic hinges to be formed at the vertices
of the half planes because of such a bending of the layer S, The layer will henceforth be considered as a "pin—
joint system.? The length I of the *rods" equals half the wavelength; i.e,, I =7/6.
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4. Let us calculate the reactive force of the half plane P, to the break in its boundary (Fig, 1). The
equilibrium stress state in the half plane is described by system (2,11), We give the vertical displacement
of the boundary of the half plane Py as follows:

v(z, —h) =58 D) gy 008 (2 — 1) O, (4.1)
h=1 ' :

where C is the amplitude of the bending,
Let us seek the solution of (2.11) satisfying condition (4.1) and o45(%, —h) =0 in the form

u(z, y) = 2 = 1)_U2k ~1(y) sin[(2k — 1) 8],
v (4.2)
vz, y) = A (2k—- 4)2 sr—s Va-1 (y) cos [(2k — 1) 8z].

Then a solution of the form (4.2) in which

—3 Btk
Vana ) = — ["21;—1 (2ka— 1)0 dop—1 + dop—1 (¥ + h>] e 1)9(1140”

. — K
Vop—r ()= [Fop—q + dap—1 {7 -+ )] RN,
where
4 4C (2k — 1) 8
Tavr =m0 D1 = Tm 3T o)

will be the desired solution. The reactive force P of the half plane Py fo a break in the boundary, which is
lumped at the vertex of the break and has a vertical direction (see Fig, 1), is determined in the form
L2 (=)= E
P = \ Gzz(x,—h)d “2 (1_02) 2(:)1"_1)‘ = 2(1—69) G {4.3)

- 12

where the Catalan constant is G =0,915965594....

The reaction of the two half planes to bending of the foundations is 2P. It is natural to assume that there
are plastic deformation zones located in the half planes in the neighborhoods of the break in their boundaries,
In this connection, the quantity E/(1—c¢? in (4.3) is replaced by E/(1-0% =E,, the characteristic raodulus in
the plastic deformation zone., For iron p,=7.84 g/cm?, by=2.8 km/sec, cy=5.7 km/ sec, n=0.63, m=2.7,
05=20 kbar, and the quantity ¢ for compressions k close to og lies within the limits 1.43=6h=1,45, The
height of the layer h is taken from [1]. For the layer to be broken, it is necessary that the force be greater
than 2P; i.e.,

5

2E,G 31, {?’—bz) 1

U>—— —
> 6h 490 o -)bZ sin (,),/2) (4.4)

Let us use (4.4) and let us construct a curve separating the domain of those values of U and v at which
a break in the layer is possible in the (U, v) plane, The points U and y which lie above the curves shown in
Fig. 2 correspond to values of the velocities of the contact point and the collision angles for which a break in
the layer is possible, Curves are constructed for iron for different values of E;=E(1—6?/®(1—0% (14=
Ksec),

The author is grateful to S, K, Godunov and E, I, Romenskii for discussions,
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